Code No.: 16338 AS

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VI-Semester Advanced Supplementary Examinations, August-2022 Signals & Systems

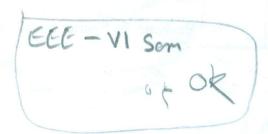
Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Relate the Impulse signal, Step Signal and Ramp signal.	2	3	1	2
2.	Express the signal x(t) in terms of Trigonometric and Exponential Fourier Series.	2	1	1	1
3.	Show that Fourier transform of a periodic signal will be a train of impulses.	2	2	1	1
4.	Write short notes on Dirichlet conditions for Fourier Transform.	2	1	1	1
5.	What is an Anti aliasing Filter?	2	1	2	1
6.	Develop relation between Fourier and Laplace Transform. In what way it is different from Fourier transform.	2	3	1	2
7.	Verify the Discrete time Signal $x(n) = \sin(3n)$ is periodic or not.	2	3	3	1
8.	Compute the Z-transform of $x(n)=a^{n+1}u(n+1)$.	2	2	3	2
9.	Write about the Convolution Integral to find the output of the Continuous Time system.	2	1	4	1
10.	Prove that Energy Spectral Density and Autocorrelation Function forms a Fourier transform Pair	2	3	4	2
	Part-B ($5 \times 8 = 40 \text{ Marks}$)				
11. a)	determine the fundamental period.	4	3	1	2
	i) $x(t) = \cos\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t\right)$ ii) $x(t) = e^{-7t}\sin 10\pi t$				
b)	Derive the relation between trigonometric Fourier series and exponential Fourier series.	4	2	1]
12. a)	State and Prove convolution in time and differentiation in time properties of Fourier transform.	4	1	1	1
b	Evaluate the Fourier transform of $x(t) = 1 - e^{ t } \cos w_0 t$	4	3	1	2


Code No.: 16338 AS

13. a)	Compare Instantaneous Sampling, Natural sampling and flat top sampling.	4	2	2	1
b)	Obtain the Inverse Laplace Transform of $X(S) = \frac{4}{(s+2)(s+4)} \text{ for ROCs} i)Re(s) < -4 ii)Re(s) > -2 iii) -2 > Re(s) > -4$	4	3	3	2
14. a)	Determine whether the following systems are linear or non-linear, time invariant or time variant.	4	2	3	2
	i) y(n) = nx(n) ii)y(n) = x(-n)				
b)	Compute initial value and final value of the following z-domain signals	4	2	3	2
	$i) X(Z) = \frac{1}{1 + 2Z^{-1} - 3Z^{-2}} $ $ii) X(Z) = \frac{2Z^{-1}}{1 - 1.8Z^{-1} + 0.8Z^{-2}}$				
15. a)	Determine the Convolution of the following signals	4	3	4	2
	$x(t) = e^{-3t}u(t) and h(t) = u(t-1)$	TO DE			
b)	List the similarities and differences in convolution and correlation of two sequences.	4	2	4	1
16. a)	Determine the Fourier Series of half wave rectified sine function	4	3	1	2
	$x(t) = \begin{cases} Asin\omega t & for & 0 \le t \le \pi \\ 0 & for & \pi \le t \le 2\pi \end{cases}$				
b)	A continuous time system is represented by the following differential equation	4	3	1	3
	$\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = 2x(t)$				
	Determine the impulse response of the system using Fourier Transform	11 11			
17.	Answer any <i>two</i> of the following:	- 470			
a)	Explain the Sampling theorem for Band limited Signals.	4	1	2	1
b)	Determine the Discrete Fourier Series of.	4	3	3	2
	$x(n) = \cos^2(\frac{\pi}{6}n)$				
c)	Determine the Convolution and Correlation of the following discrete sequences	4	2	4	2
	$X(n)=[1\ 2\ 4\ 6]$ $h(n)=[2\ 1\ 2\ 1]$				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%		
ii)	Blooms Taxonomy Level – 2	35%		
iii)	Blooms Taxonomy Level – 3 & 4	45%		
